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ABSTRACT 

The properties of topological objects with fractional 
charge are studied. We first transform to new varia- 
sles, in terms of which the lowest order contribution 
gives the fractional charge. We then gauge that frac- 
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mensions are studied. In particular arbitrary periods 
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out to be proportional to fi. C and P violations due 
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1. - INTRODUCTICN 

In both solid szate physics and particle physics it has 'seen realized 

that the particle s?ectrUm of a theory may consist not only of the excitations 

manifest in perturbation theory, but also of particles of a non-perturbative to- 
1) pological nature, termed solitons . 

'Chile in solid state phenomena the existence of soliton Yxcitations has 

been demonstrated, in particle physics one is still at the beEinninG of the process 

of unravelling the impact of solitons on physical phenomena. 

The structure of the soliton sector has become even nore rich by the 

discovery that solitons may carry fractional charges 21-4) . This possibility has 

caused great interest in both solid state and particle physics. 

In this note we discuss some aspecr s of fractionally c&r&ed particles. 

The fractional charge nay correspond to either a 1:10&l ;ynnctry or to a r:auj:ed 10~1 

symetry. The rlobal charge (nay fortw when light t‘ermions are adasd to a system con- 

tainiti:: topological nxcitations. The propagation of light fernions in a solitonic 

background causes an instability in the Djrac sea of fermions resulting in the 

topological exciLations acquiring a Global fractional charge. I:: this ;-apr ::e 

study in some detail the properties of these hybrid objects. In two dimensions one 

can go further by EauEing the global charge and investigating its electromagnetic 

interactions. 

In Section 2 we review the formation of fractional global charges. Their 

fate, once they are gauged, is followed. We investigate in particular the case in 

which a background electric field is applied to the system. A rich structure 

emerges, notably models with an arbitrary period can be constructed. The models 

studied are two-dimensional. A new scenario for C and P conservarion in these 

:nodels emerges. 

The second type of fractional charge is obtained by adding a topological 

8 term to a theory in which solitons appear. In four dimensions it was shown by 

Witten that monopoles turn into dyons 5) ; in Section 3 we construct a similar 

phenomenon in two dimensions and study it under various CircUnlstances. Massless 

fermions are added, and so are chirality-violating Yukawa couplings. In particular, 

we get models in ,which the dependence on the ? parameter i; not periodic. 

In Section 4, we summarize the somewhat wide range of results and try 

to draw some four-dinensional lessons from them. 



2. - GLOBAL !?k':TIOLIAL CHARGE : A KE'JIEIU' 

Slowlv -ar‘:ing field noproxinat~on -----i-___L-----________-_________ 

Goldstone and Wilczek 4) have proposed a general method for calculating 

the global ci-arges residing on solitons. 5ie recast their resulLs in a slightly 
dif?erent language. In fact, ~8 shall transforn ?.o ?.ew i‘ieid \a+ables, in terns 

of which the result for the fractional charge is contained in tke lowest non-zero 

order. In the tase of slowly varying fields the results are xser‘ul in both two 

and four dimensicns. We start by solving a Yukawa node1 41 . Consider the Lagrangian 

(2.11 

Defining t?e new variables p, 8 and ;< by 

4,: pco>‘d ; &= p Ii-l.4 ; y = eXj[-*)X (2.2) 

one obtains, ir two dimensions : 

~.-;-jiar-J~~X4?t-jil;r~X~~Fd -+y) (2.31 

?lote that the field x is a chiral singlet and that under a chirai transformation 

angle C the field a is shifted to CL + 0. We rewrite (2.3) as 

A= i5~X-~~fX+i!i2(X+~@df (2.4) 

where 

A,= i (2.5) 

In order to calculate the fermionic charge one defines : 

Thus 

(2.6) 

(2.7) 
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‘X!,j 
i: 

is tl:e Iauge invariant cnr**ent :;efi:ied by poinE splitting and a line 

irZ?UT.l). ::qis res:;lt is obtaj.ned as fo:lous 

qqa*l rr‘uw = ~wt~ rrm + -; 2~~4 rpr~,,Cr'9~~w3xcd + W = 

jp($) - i r(w) rrrLq rw4 * Err r f r&GJ X(l) + O(L) 

!!I* LI;O terms in the square SracKets, cne cmllr,: tran ihe E se'paratim li, tIIe 
X fields and one from the lineintegral~needed to reach the gauge invariant 
j(x) 

" ' 
cantribute equally in the limit E + 0, resulting in -1/2n E 3vcl. I" 

PV 
an external c? field (a background field AilI 

< p1q4 = i J <Tj:“[o)jJ”‘Lxl>,J+ P+a-J dlx (2.81 

+ higher order terms in aa. 

It is here that one invokes the slowly varying field approxinztion. :hus 

( . ‘qal) It ‘4 = $J”F[xl 

with 

F= 
i 

(canst.1 $$+ [higher' order terms in 

terms in aa ] 

This leads t3 

(2.9) 

O(+[secOnd and higher order 

(2.10) 

12.11) 

Leaving, to leading order in derivatives (as compared with gp) 

(2.121 

and 

QF ~[~~%~~;o,= k ~~Cr-,-d(--o~ (2.13) 

'Thus a fractional charge is induced on a solitonic background. As pointed out 
in i;lf. Ai, rF nay obtair. any value. In Co-r di-lcnsions, tile model SC EQ. (2.11 

~roc!uces PO induced current, since both scalar and pseudoscalar densities are even 

under charge ccnjxgation. However, we get an induced current for rhe analogous 

-de1 
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Lz;qpy - a? r+.4*T:l;Iy 
(2.14) 

::ow we cefine 

(2.15) 
5~3 obtain 

(2.16) 

jie do not compute extra terrm [analogous to the term of C2.3)] since they 

da not contribute to the induced current. It turns ollt ( that the answer of 

?sldstcne ad Wilczek 4) 1s reprcduced by using only the axial part dyuS)* of 
the interaction rem. In this case, the first non-vanishing contribution comes 

?9,m the 32:~ diq;ram i-he triangle diagram vanishes due t3 charge csnjugarion). 

Also, the answer is r'eprocucec with the unregulaied Ser. Thus 

+I,, = &, -L- LfJ Ls-'fs),(r,r'a'sl, (ras4eJJ (2.171 

!+ higher derivatives) 

Tke char&e is given by the contribution of the first term only. The Vector part 

of the interaction must therefore be cancelled by the terms coming from the E 

separation. Substituting (2.15) into (2.17) one obtains 

(2.18) 

'!hich is automatically conserved. As stated ir the beginning of this paragraph, 

all results here agree with those obtained in Ref. 4) by direct methods. 

The classical approximation --------------------------- 

The formation of fractionally charged solitons can be visualized by 

'?oscnizing the system and treating classically the soliton configuration 
4) , We 

shall demonstrate this for the system (2.1) 'with e2 z 0. Then the two dimensionai 

Lagrangla" 1s : 

I= +[?,+f. i qjy - A(+'-& Gv+y (2.191 
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The Lagrangian can be studied by bosonizing the system. A real field o is 
introduced such that the following relations hold, 

iqqy= 4 1y-y 

qy=- cr Jr tos 2w 

3vG 

(2.201 

Thus the bosonized version of the Lagrangian of Eq. (2.19) is given by 

I= ~[?,&+c?+-,‘- A~~-a’~-G+lw)9\ (2.21) 

It will turn out to be useful to write also the fermionic charge QF in terms 

Of (I 

QFZ (-q ray An= 
-4 

& PC (2.22) 

In order to identify the particle excitations of the system one should identify 

the various classical vacua of the system. They consist of the configurations 

(+,o) which minimize the potential ?(@,u), where V(+,U) is given by 

9 [4,G) = >(+%A <Gpf co+w (2.23) 

The minimal action configurations for 8ha" >> G$ are 

and ~~f-~,G'nfi} 

The minima are shown in Fig. 1. Actually, one can show that in general the minima 

are at c$, = fik and $,, = (-l)'+'z, where g is the positive solutiOn of the 

equation 4hZ(Z2-a2) = CGU lZ>a). The breakdown of the discrete chiral symmetry 

ci + 0+(&i/2) is reflected in two dimensions by the existence of solitons. 

A drastic change has occurred with the introduction of the fermions into 

the system. For a zero Yukawa coupling, C, the solitons in the system would have 

,$(-I - $(-) E 2a and, of COWS?, zero AO (AD :: k,.'ii correspond to the original 

fermions). Snce G is non-zero, this soliton has an infinite (infra-red infinity) 

energy, the Dirac sea becomes unstable, and a change in a following the change 

1" @ is required to stabilize the system. In this example, ~%a is %?i;/2, the 

two solitons acquire a + fermionic charge (the corresponding antisoliton will 

have as well QF q t$,. The two solitons are shown in Fig. 1. 
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The fact that 30 f 0 signifies ';he s~ontaneo~ls breakirsg of :?e discrete 

:r::.rz? symmetry possessed by the Lagrangian, ~35 ,l:) obtains an expectation vzl;e 

-2s the broken symmetry LS discrete :.> + -6, ~I + y,::,l co ,Soldstone tcsor is rs- 

:.:ssaryj . 

^augir.g the fractional charge ---------_----_-------------- 

It has been shown that the lowest energy state 1:: the soliton sector is 

5 rollective excitation of both the original soiiton and the fermionic degrees af 

:~^L3e3"rn. This excitation has a fractional global charge. IWe !muld like to fir.5 

;'A: to what extent the soliton will behave as a charged object. In order to test 

::?is we gauge the fernionic charge by adding a term j A 
1111 

to the Lagrangian. 

l= -:(~~$,'-V(d)~i~~~~G~+\y~e~r~~Ap--1f~ (2.24) 

I : is again convenient to study the mergetics of‘ the system in term of its 

rzzonized version. Using the notaticn displayed in Eq. (2.X), :w obtain 

Tie redundant gauge field A 
u 

can be integrated out to give : 

I= ; &+j- v(r)) + ur 14 Q-l’- Gm+ CW) - $1 (2.261 

:,here m = C,,. The classical vacua are the minima of the potential 'N(@,D), where 

::ta,o) is given by : 

w(#,c)= v[))+ Gm~co5(2md + !$ (2.271 

:.e can now check the various regions. Let us start in the region e2 CC Gma 

:~:nere a is the minimum of the potential V(m). For simplicity, we assume that 

.!!A) i V(4). 

In the ($,a) plane, only me absolute minimum now survives, the one 

::it’- 7 q 0, 4 = 2. Discrete chiral symmetry B$ + y,+,$ + IQi IS explicitly 

3P"Ken. If e is mall, may unstable minima survive, allowing t!ie existence cf 

-zirs of both almost integrally and x.Lr.ost half-integrally chari;& parriclc-s. ;-s 

s increased, the maximally allowed almost integer charge, nmax, decreases 

,xtil no unstable minima exist for a large enough coupling. What does this imply 



1or :he fractionally charge solitons ? Lie gauged the -errion charge, it thus 

:nteracts with A 
U' and in two dimenslozs a charged particle sets ccnfined. 

The rotersrlal has only one absolute minicur and without degeneracy no solitons 
can exist. The fractionally charged soliton got confined and, af cowse, so did 

the fermions. The string which confines two objects has a tension pPOpOrtiOna1 

to the product of their charges. In our semi-classical picture the tension 

between two solitons is determined by the energy difference between the two mininna 

which they bridge. The fPactiOnally charged solitons are indeed confined by a 

tension which is iieaker than the tension confining ordinary fermions by a factor 

l/4 as required for a particle of charge i. 

In this model one envisages also bound states composed of three particles. 

One fermion and a soliton-antisoliton pair, all these have together a total fermion 

charse of zero. This configuration in the ($,a) plane is shown in Fig. 2. These 

states are not stable topologically and n-y at best exist as metastable states. 

Another test to the 'way ir, which the soliton is really charged is to switch on a 

background electric field. The behaviour of charged particles in a background 

electric field has been studied extensively 6) . We wish to verify that the frac- 

tionally charged solitons behave in a Fimilar manner. 

A constant electric field is introduced by adding a term 

to the Lagrangian of Eq. (2.24). The bosonized form tul‘ns out to be 

A= I,(?&kyf-v(+) - G+oq2~r) - $ (c+ $J= 

and the potential to be minimized is 

an = v(#) 4 G-+ c+Trq -c 4 p A&,’ 

(2.28) 

(2.29) 

In this case, the system will still have one absolute minimum at that value of 

0 (picked from the extrema of the cosine term) which minimizes to + B/2&)'. 

However, the degeneracy in a is resurrected for e = F which is equidistant 

from o = 0 and o I -~'ii/2 ; thus at 8 = 5 the configuration (4 = a, 

CI q -&/2) and the configuration (r$ =-a,a = 0) are degenerate, and a soliton 

with Aa i &/2 (fernion number $) reappears in the same manner as Coleman's 

5alf asymptotic states appear in the massive Schwinger model for S z TI. The 

fractional charged soliton has been liberated. Note that for large e , 



'7 = -912~5 is the sole zniniaum and no liberation seems to occur. These results 

are peridic in e (with i period ~1, in We sense that for 6 = n/2 + n 
:n : 0,*1,9, . ..I solitxs are liberated. 

The fact that the period has been reduced t3 7 is evident from the 

lnvarlance of the Lagrangian under the following transformations 

e-,e+ntl ; G-,G-$*\ ; k-,-j 
(2.30) 

,Sbviously, on the background of a soliton 'with well-defined "3 r.umber", the 

periodicity is still 2~7. In the massive Schwinger model where the periodicity 

in 6 is 2n, the t? term generally breaks C and ?, however, for 0 = n4 

one can redefine the parity and charge conjugation symmetries such that the 

theory is C and P invariant. 

These modified transformations are : 

p 1 G(x) + -ndif -CC-10 ; F., IX) - - F.t 1-d 

c ; G(x)+-nFn - Glxl ; F.Ibl-, -F*ld 

One expects, however, that these symmetries will be spontaneously broken at 

6 z (2n+l)n. In fact, this violation is realized by the appearance of the "half 

asymptotic" states. 

In our- case, Eq. (2.28), due to the shorter period in 6, we can now 

redefine C and P symmetries for 0 : l2n+l)n/2 which are awin expected to 

be spontaneously broken. These are: 

p; c.++-+ -q-a : FOI W,-, -Fsd-8) ! #xv-J -+I-4 

c', C(x)- -"q - C(jt) : F.,(j)-) -F.,(x) : $+"-#Xl 
(2.31) 

The existence of a liberation angle emphasizes again that the fractional 

charge behaves as a regular charge. One may wonder if by varying the value of 

the fractional charge, one may also vary the value of the 0 angle at which charge 

liberation occurs. This does happen. To see the latter, consider a Lagrangian 

introduced by Goldstone and 'rlilczek 4) srhose interaction part is : 

+ 3: e-y -y(oc\ (2.32) 
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1 being a real scalar field. 9, bosonization, one obtains that in the presence 

of an electric background field (after gauging first the fractional charge), the 

potential sC@,o) to be minimized is 

5 [4,c) z G’wl co,(lfit-d) -v(4) * $ (+lj$ (2.33) 

'I(a) has a discrete set of degenerate minima. For e-0, the soliton carries 

a fermionic charge given b'~ 

where ha is the difference between the OL values of degenerate minima of the 

effective potential. By tuning Au one may obtain any value for OP. 

For e2 CC 2n Gm and 0 z 0 the soliton, which now carries a gauged 

rharge, i;ets confined. The effective potential has only one minimum. At the 

Liberation angle, 0, , at which half-asymptotic states appear in the spectrum, 

‘.he effective potential will have two degenerate minima. This occurs for 

8,~ Q,a-4, (2.35) 

where a0 is the value of a at +a. [For a symnwtric V(a), a at -m is -cl0 

and EE i 0.1 In other words, the existence of a fractional charge causes the 

screening to occur at a different value of the background electric field. The 

ratio (BQ+a,)/PP is pi. One may also enquire as to the length of the period 

I" 8. It is clear that the effective potential (2.33) has a period 27, inde- 

pendent of the form of the potential V(o). 

If the potential ii(a) is periodic too, an additional structure will 

emerge. Actually the outcome depends on 2nP the period of V(a). The 

effective potential will remain invariant under the transformation 

e- e-NPHI-201 
c * c* J;iPm-Jin 

a-3 4*2lon (2.36) 

In the case e = 0, the soliton carries a fractional charge OF = P and thus 

the system will have a period 27OP. The problem can become wre intriguing 

if P is not a rational number, that is if the periodic of V(a) is incommen- 

surate with 27. In that case, the system will have two periods. It is known 



that similar systeas 71 have xite ar. erratic e dependence. Any '/2n of the 

r-err ?.v+n is equivalent t3 i = d. Yhis is true a1sc for any ?, b,ut for P 

irrational, 3~ have an infinirs number c,f Y,alues C:^ 5, arbitrarily close to 

e = 0, for which Wwc is no : and P violaticn (they still are 9f :easure zero). 

AS the rinima of I! zre Si5cret.e a would-be Goldstone boson ("zxion") would not 

result. A concrete exanple cf such effects my be a lode1 'iith t:ao cassive 

charged particles, one of the- also having i T!lirring interactia, ,hLch makes 
their periods inconmensurable. Clne my wonder <<nether a sinilhr !xciianisr:~ may wor'k 

in four dimensions to cure ti-.e CF orablen. 

The four-dimensional non-Abelian gauge theory has an extra C and P 

violating parameter, 8, in a dilute instanton approximation the physics is pe- 

riodic in B with a period 2-i. We do not understand how to describe this phe- 

nomenon in t.er!ns of screening of some "background" described by a non-zero 8. 

!ie presume that such a description exists and that some nind c,: c!?arce does the 

screening, if such a charg- - cn be endowed with an additional r^racrianal charge 

it could increase the amour,t 2: CP conserving O's without 1eadir.g to an axion 

Admittedly, this scenario for :le non-kbellal case is r~arher loose, XL in view 

pi' the rLcti structure theoritz ~:ave in the presence of a 0 prmeter, we uish 

to point O"L LhlS possibilitv. 

3. - FRACTIONALIZIHG A GAUGED CXARGE 

Having studied the &auging of a global fractional charge, let us turn 

to a system in which the fractional charge is gauged ab initio. It was pointed 

out by Witten 51 that a monopole la solitonic configuration in non-Abelian theories1 

of magnetic charge !4 (in units of 2n/el, will obtain a fractional electric 

charge BM/2n (in units of ei, in the presence of a CP violating (8/32n21FP 

term in the Lagrangian. In two dimensians, there is only an electric field, 

F 01. In order to introduce an analogue to the magnetic charge, we will make use 

of another charge available in two dimensions, the topological charge. Consider 

thus a real scalar field coupled to the gauge field via its topological charge. 

The Lagrangian is given by 

1. = + pfnt,‘- vlll + .+yF - t f; * ee f;l;FF (3.1) 

iihere 'J($) has a nilmber of cegenerate minina. Integrating out FuU ,one obtains : 

A= #)tf- WI - $ WgJ (3.21 
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First, ccnsider the system for 9 = 0 and IV($) = V(-$1. In that case the 

modified potential V($) + Ce2/n)$' still has a discrete symnetry (4 + -4) and 

for small enough e, rhe potential has two degenerate rinima at m i ?a, say. 

Solitons for 'which m(m) -$(-=) d 0 exist. 'We wish to draw an analogy between 

some properties of this soliton and some properties of a magnetic monopole. Let 

us now switch on 3. The discrete symmetry is explicitly broken. The total 

Totential will have only one minimum as shown in Fig. 3. This situation should 

remind us of the gauged soliton of the former section. As the system has only one 

mlnimun, the soliton state has acquired infinite energy. Only pairs of soliton- 

antisolitons interpolating between the non-degenerate Iminima are allowed, their 

energy being estimated by the tension of the "string" which connects them. The 

string tension 2e2a9/nJii (for small e) is proportional to 8. We describe 

these circumstances by claiming that the soliton has acquired an electric charge 

whose confining properties are proportional to 6. In conclusion, for 6 = 0 
the soliton, and the perturbation theory excitations are not confined. FOP 

5 i 0, the topoiogically trivial perturbation theory excitations retain their 

neutrality, :h;le the topolo&ical excitation gains an electric charge ("monopole") 

il : e(2aR/nJ;;)7 (anti becomes a confined "dyon"). In this model 9 = 0 is the 

"liberation annle". r llotn that if V(O) is non-periodic in p then, in this 

system, one has an example of a non-periodic behaviour in the 9 parameter. This 

behaviour follows from the absence of an infinite sequence of integer electric 

charges due to the finite number of minima of the potential V($). Once a e 

dependence has Seen introduced, let us focus on phenomena which could conspire 

to eliminate it. One expects that by adding massless fermions (with chiral 

invariant interactions), the 9 dependence disappears. If one would break the 

continuous chiral symmetry by adding a Yukawa coupling, G, the 9 dependence 

should survive. Let us first set C to 7.ero, in which case all theories for 

different 9 should be equivalent. We recall that for E = 0, objects of non- 

trivial topology were neutral in the sense that they were not confined. We should 

now enquire how, for 9 f 0 and with massless fernions around, does the soliton 

("dyon") lose its charge and gets liberated. 

The Lagrangian is given by 

where we have already bosonized the fermion bilinear. Integrating out the gauge 

field, one obtains 
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L= t t?# + I,b-f- L-v(+) tb (e,t+ e&it c?& ,'] (3.41 

cot- any 9 the potential V9iS,0) *ioulzi be minixizeti ::; t?e classicaL rcnfi&u- 

rations h$ = CL) J = :+I, where a,, b- refer to Lhe 'regenerate minima of 

"(I@) and cii =,-l/eJS;ti+ {Oe1/2fi}). Solitons are rt:us ILLeraSez and have 

effectively lost their charge. <:le have already remarked riia: ::nen ~: obtains 

3 classical expectation value, breakdowr of continuOus c!iral symme:r:, is implied. 

::a Gcicstone ljos0r.s ir155 due to the chiral anor?aly xic:: gexeratss zi:e v:ass of i 

"1" par-clcle represent& by rhe fluctuation of C. Another l;ngu;<e LO cjescribe 

the ?hel?omenon is tL-e formation of a chiral condensate resulting in the conplete 

screening of the C backgrowd electric field. Xhat has ocwrred is not ilnlike 

what occurs in the -iasless Schwinger model in the presence of a background field. 

Let '~3 rext czrsider the case for which continucus :klral symetry is 

.?:rplicitl', '~ra:.:e:1 CL; the idai'iion of 2 ‘iukawa tern 

1s +[Q,t,‘+~~ -tF;- (3.51 

Yhe '~asanizeo fern is 

I= tPdf& +&lx- ~itl+z* [e&q-++;)‘, 4 y1~to,16~] 
(3.6) 

Due to the Y,.,kawa :erm, the effects Of 0 cannot be eli::inated. For e3 : ez : 0 

and e, c< 2nC)J the syster. consists of solitons of fermion runber fi. 

Ilext, let us switch on the background field keeping the fermion number 

'Jngaugeo, came1y e2 z 3, with e;, 62; cc 2nL$. In this case, we expect the 

soliton with fermion number ?f to gain an electric charge related to 6 and 

thus become confined. Tiie confined solitons will have both elecwic ano fermionlc 

charge. Tn this case, the fernionic charges are ii ar,a :r.e electric crarqes 

The t'ieory is ret periodic in e. When lwe gz;rje the :ermionlc charge 

ie2 f 01, integer charged fermions are confined apd the periodicity in t? is 

regained. The system is invariant under 

C-,C+ii?n 

B-3 e- zrin 2 

Thus the ;eriod in 8 is 2n(e,/ex). 
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4. - DISCUSSION 

We have shown that there exist new variables in terns of which a lowest 

order calculation gives the fractional charge residing on a soliton. We have ce- 

mnstrated in two dimensions that this is a bona-fide charge. This has been esta- 

blished by gauging the fractional charge and studying its electromagnetic properties. 

In the tuo-dimensional models the charged soliton confined. It may be liberated 

in the presence of an electric background field 0. The period length of 8, and 

the val;e of 0 ai. which liberation occurs are determined by the value of the 

fractional charge. Interesting phenomena occur when the scalar field is self- 

interacting vith a periodic potential whose period is incommensurable with 23. 

A scenario for having a large number of C and P conserving theories emerges. 

We have also constructed two dimensional models in which fractional 

gauged charges are induced on a soliton by a background electric field, and are 

Uped ou: by the introduction o? nassless fernions. 

iu'e conclude by a four-dimensional analogue of the construction. Assure 

one 3as a Georgi-Glashow a) model *rith a potential of the form V(b) q ~2(~2-a212, 

for which 161 at infinity may be either zero or a. Such a theory would support 

monopoles, when a term which prefers 3 = 0 is added to V(#) the monopole ceases 

to be a stable excitation. Nevertheless one may envisage the following metastable 

excitation. The field $ in the radial direction would start from 4 = 0 

rise to 141 = a and go back to ;$ i 0 at infinity. This configuration looks 

like a nonopole wrapped by an antimonopole. The monopole would behave as if it 

were superconfined, that is as if it had acquired some form of "colour". Unfor- 

tunate1y V(r$l is non-renormalizable in mope than three spacetime dimensions. 

In the 2+1 dimensional case, vortices play the r&e of the monopoles. 
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i:iCURE CAPTIOllS 

Fig. 1 : The classical vacua in the l+,u) piane. 

Fig. 2 : A metastable soliton-antisoliton-fermion bound state. 

Fig. 3 : The effective potential for 0 t 0. 
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